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C O M M U N I C A T I O N S  

Total Mathematical Resolution of Diffusion 
Layer Control of Barrier Flux 

Keyphrases 0 Diffusion layer control -mathematical derivation u Membrane permeability -equations describing diffusion layer 
control a Derivation- resolution of diffusion layer control, 
barrier flux 

Sir : 

Equations dcscribing the flux of a penetrant through a 
membrane sandwiched between two liquid phases under 
the conditions where the chemical potential gradient 
is oirtuaZIy entirely in the diffusion layers (diffusion 
layer control) were derived. With like solvent on each 
side of the membrane, these equations confirm that 
the steady-state flux is only dependent on the applied 
phase concentration, the diffusivity within the diffusion 
layers, and the reciprocal of the sum of the diffusion 
layer thicknesses. 

Furthermore, a lag time expression was derived which 
relates the duration of the nonstationary state to the 
thicknesses of both the membrane and the diffusion 
layers, the membrane/solvent partition coefficient, and 
the reciprocal of the diffusivity within the solvent. This 
equation is of major theoretical significance because it, 
along with the relationship of partition coefficient to 
homolog chain length, indicates that at  some point in 
a homologous series the lag time will begin to grow 
exponentially. This effect extrapolated to biological 
systems, i.e., drug absorption and biodistribution, in- 
dicates that the activity of a long chain congener may 
not only be limited by the plateauing of steady-state 
transport but also by inability to break through the 
biological barrier(s) in  sufficient time to exert an effect. 
The saliency of this point is heightened when it is 
realized that metabolism and elimination by filtration 
may not be similarly affected. Relative potency from 
biological assays with fixed, timed end-points, i.e., 
vasoconstriction at 6-hr. postapplication, could be mis- 
leading if the time choscn is not relevant to actual drug 
usage. In short, the lag time dependency alone can 
suffice as the limiting factor in the structure-activity 
profile for a series of organic homologs. 

Figure 1 describes the physical situation to  be treated. 
It is a concentration profile of a membrane (111) posi- 
tioned between two homogeneous solvent phases (I 
and V). Phase I is of relatively high concentration, Co. 
Co is assumed t o  remain constant. Phase V is assumed 
to be a solute sink and thus is maintained at  zero con- 
centration. Regions I1 and IV represent solvent dif- 
fusion layers (Nernst layers) contiguous to the mem- 
brane surfaces (1-3). The thickness of the diffusion 
layers (I1 and IV) are hAoI1 and hA4~V,  respectively, and 
the membrane is of thickness hM. 

By assuming the concentration curves Co to CI and 
C3 to C4 to  be linear, the flow into (V,)  and out of (Vz )  
Compartment 111, the membrane, may be represented, 
respectively, by : 

(Eq. 1) 

where DAo is the aqueous (solvent) diffusion coefficient, 
and A is the cross-sectional area available for diffusion. 
The rate of change of concentration in 111 is: 

(Eq. 3) 

As diffusion layer control is approached, the membrane 
concentration at each membrane interface becomes im- 
perceptibly different and, thus, C2 = (PC)C, = (PC)Ca, 
where(PC) is the membrane/solvent partition coefficient. 
The identical assumption is made for the concentration 
across the diffusion layers under membrane control of 
flux. For convenience at this point, assume that hAolr = 
hAQ1V; then: 

(Eq. 4) 

and: 

0%. 5 )  

where the term hAQ is the thickness of the individual 
diffusion layer. With the boundary conditions Cz = 0 
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at 2 = 0 and Co = constant, the solution of this equa- 
tion is: 

c* = 2 { 1 - e-ZDAQt/(PC)hMhAQ) (Eq. 6)  

and Cz - (PC)Co/2 as t - w . 
The cumulative amount through to Compartment V 

is given by : 

and since: 

Mv = lt V ~ d t  (Eq. 7) 

then, by repacing Cz by the previous equation and in- 
tegrating, one gets: 

As t increases, M y  approaches the straight line: 

which extrapolates back to a time axis intercept or lag 
time of: 

The slope of the steady-state line (the steady-state 
flux) is : 

DAQACO 
2hap 

slope = F, = __ 

Diffusion layer control has been treated so far by 
assuming diffusion layer thicknesses and diffusivities 
equal as well as equivalent partitioning into and out of 
the membrane. This situation could only be expected 
for identical solvent on each membrane side using a 
totally symmetrical diffusion cell. A more general solu- 
tion to  the diffusion layer control of flux situation 
where ~ I I  Z ~ I V ,  DII # DIV, and (WII Z (WIV 
may be obtained using the same stepwise procedure. 
Because of the number of terms, the equations become 
cumbersome. However, the final expression for Mv is: 

where : 

and : 

The general expression for the steady-state slope is thus: 

2 
2 
t 
rL 
I- 
2 
w 
0 z 
0 
0 

0 -  

V 

,s": 
DISTANCE ALONG DIFFUSIONAL VECTOR 

Figure 1-Coiiceiitration profile through u meinbraiie-diflusioir 
layer barrier operating wider diffusioii layer flux coiitrol. 

and the lag time expression is 

These equations reduce to the previous case when the 
appropriate terms are made equal. 

Under what conditions are the equations actually 
applicable? Without the membrane interposed (except 
as a plane about which the diffusion layers are gen- 
erated, i.e., for an infinitely thin membrane), the lag 
time based on Daynes' (4) and Barrer's ( 5 )  equations 
would be : 

where ZhAQ indicates the sum thickness of the diffusion 
layers on each side of the membrane. 

The first condition of applicability, therefore, is that 
the lag time, as expressed in Eq. 17, must be much greater 
than that expressed in Eq. 18, a condition which is 
certain for virtually all thick mernbranes. A second 
condition is that the overall process is in diffusion layer 
control. By independent derivation, it can be shown 
that steady-state flux across such a barrier can be ex- 
pressed mathematically by (6,7): 

F., = P A C 0  (ES. 19) 

where P is the permeability coefficient: 

Diffusion layer control occurs when (PC)DMZhAQ >> 
hMDAQ, and the flux equation reduces to: 
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MEMBRANE . ZONE OF I DIFFUSION LAYER 
CONTROL I TRANSITION I CONTROL 

P 
n [OR LOG (PC)] 

Figure Z-Plor of flie log (lag lime), curve 1, or log (equimolar steady- 
stale flux) agoiirst carboir rrumber or its equivalent on /he dimensioii- 
less axis, log (PC). If /Ire fwo Y-axis cariables are in compatible units, 
flw liriiitiug slope of I arid !Ire initial slope of 2 will be equal because 
/he parritiori coefficieiif dcpeirdencies are the same in tliese regions. 

which will be recognized as being identical to Eq. 12. 
Thus, the principal condition is that (PC)D,ZhAQ 
must dominate the permeability expression. This will 
occur at some point in  a homologous series because the 
partition coefficient will grow exponentially with chain 
length (8). Experimental verification will be presented 
in a subsequent report. For the present, it suffices to say 
that not only can one expect steady-state flux from 
equimolar solutions to  level off within the series (3, 6), 
but one can also expect the time of barrier breakthrough 
to  grow exponentially as chain length is increased once 
diffusion layer control has been attained. This de- 
pendency of lag time on chain length, n [or log ( P C )  
which is directly related], is illustrated in Fig. 2. Also 
included in Fig. 2 for comparison is the relationship 
for concentration normalized steady-state flux which 
was previously derived (3). Both curves exhibit a marked 
change in slope at the crossover to diffusion layer con- 
trol. The regions of total membrane control and total 
diffusion layer control are indicated, as is the transition 
zone between. 

In 1963, Barrie et al. (9) derived steady-state and lag 
time equations for gaseous permeation of three-layer 
composite rubber membranes. The transient-state 
equation found in this paper can be converted so that 
it is applicable to the diffusion layer-membrane situa- 
tion, This may be accomplished by multiplying each 
term in the equation (numerator and denominator) by 
S,, the solubility in the middle layer of the laminate. 
The S,/Sl and ratios obtained are equivalent to  
(PC),, and (PC)Iv as defined here. A careful examination 
of this equation in this form indicates that it reduces to  
Eq. 18 when h, + 0 and to Eq. 11 or 17 if the partition 
coefficient(s) is(are) large. Thus, when appropriate 

boundary conditions are placed on the Barrie et al. (9) 
expression, it is in total harmony with the equations 
derived independently in this report. 
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Identification of o,p’-Dichlorodiphenyl 
Acetic Acid as a Urinary Metabolite of 
1 -(o-Chloropheny1)- 1 -(p-chloropheny1)- 
2,2-dichloroethane 

Keyphrases ‘J l-(o-Chlorophenyl)-I-(p-chloropheny1>2,2-dichloro- 
ethane-metabolism, metabolite identification 0 o,p‘-Dichlore 
diphenyldichloroethane-metabolism, metabolite identification 0 
Mitotane-metabolism, metabolite identification 0 o,p’-Dichlore 
diphenyl acetic acid-mitotane metabolite, isolation, characteriza- 
tion, GLC, TLC 0 GLC --isolation, identification 0 TLC-isola- 
tion, identification 

~~~ 

Sir : 

The recent FDA approval of mitotane, I-(o-chloro- 
phenyl)-l-(p-chlorophenyl)-2,2-dichloroethane (o-p’- 
dichlorodiphenyldichloroethane) (I), for treatment of 
adrenocortical carcinoma and adrenocortical hyper- 
function (Cushing’s syndrome) prompted this report 
of the isolation and characterization of o,p’-dichloro- 
diphenyl acetic acid (11) as a urinary metabolite of 
o,p‘-dichlorodiphenyldichloroethane i n  rabbit and man. 
This result confirms Moy’s (1) anticipation of o,p’- 
dichlorodiphenyl acetic acid as the principal metabolite 
based upon literature reports of the metabolism of the 
related compound, the insecticide p,p’-dichlorodi- 
phenyltrichloroethane (111). 

In initial experiments, four rabbits ingested over 11- 
18 days a total of 1.18-2.13 g. of Compound I, coated 
with the aid of hexane on food pellets. Results were 
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